YOKOGAWA

Sophisticated
 Numerical, Waveform, and Trend Displays reatures

Digital Power Meter

WT 1600

- Frequency Power Range DC, 0.5 Hz to 1 MHz - Basic Power Accuracy: $\pm 0.1 \%$
- Current Input Range: 10 mA to 5 A or 1 A to 50 A - Voltage Input Range: 1.5 V to 1000 V
- Up to Six Input Elements in one Instrument (3 phase power input from two systems in one unit)
- 50 ms data storing interval - Standard integration and harmonic measurement functions
- A variety of display formats Standard external current sensor input for use with current clamps

(WT1600)

A High-Precision, Wideband Digital Power Meter

Use separate input elements for measurements ranging from large currents down the to very small currents that occur during standby operation

Superior Performance

- High Precision and Wide Bandwidth

Basic power accuracy: 0.1\%
Frequency power range: DC, 0.5 Hz to 1 MHz

- Up to Six-Phase Input on One Unit. Synchronized Measurements Between Two Units
A single WT1600 unit can make up to six different power measurements (six inputs each for voltage and current). With the measure start-stop function (synchronized measurement), two WT1600 units (12 inputs) can be synchronized.

- Wide Current Input Ranges

The WT1600 has two different input elements. A 5 A input element is provided for measuring extremely small currents, while a 50 A input element serves to measure large currents. Both of the elements can be installed together in the WT1600. The current for the 5 A input element can be set as low as 10 mA for measuring extremely small currents in energy-saving equipment.

- Two input elements
- 5 A input element
$10 / 20 / 50 / 100 / 200 / 500 \mathrm{~mA}, 1 / 2 / 5 \mathrm{~A}$ (DC, 0.5 Hz to 1 MHz)
- 50 A input element

1/2/5/10/20/50 A (DC, 0.5 Hz to 100 kHz)
Current sensor input range (same for 5 A and 50 A input elements; standard)
$50 / 100 / 250 / 500 \mathrm{mV}, 1 / 2.5 / 5 / 10 \mathrm{~V}$ (DC, 0.5 Hz to 500 kHz)

Wide Voltage Range

1.5/3/6/10/15/30/60/100/150/300/600/1000 V
(DC, 0.5 Hz to 1 MHz)

Application Software (sell separately)

WTViewer 760122

WTViewer is an application software tool that reads numeric, waveform, and harmonic data measured with the
WT1600 Digital Power Meter. Data can be transferred into your personal computer via Ethernet, GP-IB (parallel) or RS232 (serial) communications. When connected via Ethernet, the FTP client and server functions can be used. Data from up to four WT1600s can be acquired.

You can download a 30-day trial version of WTViewer from our Web site with unlimited use of functions.

Superior Functions

Data Storing as Fast as 50 ms (20 Times per Second)

The data can be stored at intervals as short as 50 ms . The WT1600 rapidly calculates input parameters such as voltage rms , current rms, and power. Measurements can be stored in a 11-MB internal memory, which is helpful for applications such as:

- Evaluation of characteristics at motor startup including torque and rpms (requires the optional motor evaluation function)
- Measurement of rapidly fluctuating secondary voltage and lamp current when a light is turned on

Trend Display

The WT1600 displays measurements for each display updating interval in a time series. The time axis (T/div) can be set in the range of 3 seconds to 24 hours (wave off). Changes in up to 16 different parameters, such as voltage, current, active power, and apparent power, can be observed simultaneously in long-term continuous tests.

Up to 16 different parameters can be observed

A Variety of Display Formats

In addition to numerical data, the WT1600 can display input signal waveforms. Eleven different display formats can be selected on a single WT1600 unit, so it is not necessary to connect an external waveform viewer to check waveforms.

Setup Parameters

Display Harmonic Data as Bar Graphs, Vectors, and Lists
The harmonic measurement function is a standard feature on the WT1600. It is capable of measuring waveforms with a fundamental frequency ranging from 10 Hz to 1 kHz . Analysis results up to the $100^{\text {th }}$ order from $50 / 60 \mathrm{~Hz}$ fundamental waves can be displayed as numerical values or bar graphs.

A Full Range of Features and Options I Example Applications

Standard Features

- GP-IB or RS-232
- Floppy Disk Drive
- 11-MB Internal Memory for store/recall
- VGA Output
- Measure Start-Stop Function

Enables synchronized measurement between two WT1600 units.

- External Clock Input

Enables accurate measurement of harmonics when using low-frequency signal inputs.

- Integration by Polarity

VGA output display

- 6.4-Inch TFT Color LCD

Capable of displaying an easy-to-view four-parameter display (two parameters during simultaneous display with waveforms), or increasing the number of parameters up to 78 .

- Rotary Knob

Can be used in combination with keys next to the screen for easy operation. The rotary knob allows the user to rapidly locate the desired parameter from numerous parameters shown on the screen.

- Saving Waveforms, Numerical Values, and Screenshots

Waveforms, numerical values, and screenshots can be saved to the 3.5 -inch floppy drive (standard feature) or the optional internal hard drive. Settings can be saved and retrieved.

Optional Features for More-Efficient Measurements

- Ethernet Port (10BASE-T) and Internal Hard Drive
The Ethernet function allow you to use FTP server, FTP client, Network printing, Automatic Mail Transfer (SMTP), and others.
D/A Output (30 channels)
Analog outputs are available for up to 30 measurement parameters. With the 6-element WT1600, as many as five analog outputs are available for each element.
- Motor Evaluation

The WT1600 can measure the output from a speed and torque sensor on the output of an electric motor, and calculate torque, rotating speed, mechanical power, synchronous speed, slip, motor efficiency, and total efficiency. Both analog and pulse inputs can be accepted from the sensor. In addition to numerical values, waveforms can be displayed to provide a visual picture of fluctuations in parameter values.

Built-In Printer
 SCSI Interface

Simultaneous Measurement of 3 Phase Inverter I/O with Single Unit. Efficiency Calculations also Passible

Input signal

Output signal
 function)
*1 751574 can measure large current up to 600A peak

Basic Characteristics (crest factor 3)

Power factor error with respect to the reading value for an arbitrary power factor

Effect of common mode voltage on reading value

SUPPORTS Crest Factor 6

The crest factor is the ratio of the waveform peak value and the RMS value.

When checking the measurable crest factor of our power measuring instruments, please refer to the following equation.
Crest factor (CF) $=\frac{\{\text { measuring range } \times \text { CF setting (3 or 6) }\}}{\text { measured value (RMS) }}$
*However, the peak value of the measured signal must be less than or equal to the continuous maximum allowed input.
*The crest factor on a power meter is specified by how many times peak input value is allowed relative to rated input value.

Even if some measured signals exist whose crest factors are larger than the specifications of the instrument (the crest factor standard at the rated input), you can measure signals having crest factors larger than the specifications by etting a measurement range that is large relative to the measured signal. as long as the measured value (RMS) is 60% or less than the measuring range Also, for a setting of $\mathrm{CF}=3$ measurements of $\mathrm{CF}=300$ are possible with the minimum effective input (1% of measuring range).

* Crest factor 6 is supported by the WT1600 of firmware versions 3.21 and later.

Related Products

751552 Clamp on Probe

-Measurement frequency range: 30 Hz to 5 kHz Basic accuracy: 0.3% of reading Maximum allowed input: AC 1000 Arms, max 1400 Apk (AC)
A separately sold fork terminal adapter set (758921), measurement leads (758917), etc. are required for
connection to WT1600. For detailed information, see Power

96001 Clamp on Probe

Measurement frequency range: 20 Hz to 20 kHz Basic accuracy: 1.0% of reading $+0.2 \mathrm{mV}(40 \mathrm{~Hz}$ to $1 \mathrm{kHz})$ 1 kHz Maximum allowed input: AC 400 Arms 1Output: $10 \mathrm{mV} / \mathrm{A}$
 A separately sold adapter (366921 or 758924) is required or connection to WT1600. This is a Yokogawa M Product. For detailed information, see http:// ww.yokogawa.com/MCC/clamp.htm\#9600 * 96001 is a Yokogawa M\&C product.

758923
Safety terminal adapter set
spring-hold type) Two adapters in a

758929

For more information on WT1600 features and a description of the functions, go to http://www.yokogawa.com/tm/Bu/WT1600/

Specifications

Input				
Parameter		Voltage	Current (5A input element)	Current (50A input element)
Input type		Floating input		
		Resistive potential division method	Shunt input method	
Rated value (range-value)	Crest factor 3	1.5/3/6/10/15/30/60/100/150/300/600/1000V	Direct input: $10 \mathrm{~m} / 20 \mathrm{~m} / 50 \mathrm{~m} / 100 \mathrm{~m} / 200 \mathrm{~m} / 500 \mathrm{~m} / 1 / 2 / 5 \mathrm{~A}$ External input:50m/100m/250m/500m/1/2.5/5/10V	Direct input: $1 / 2 / 5 / 10 / 20 / 50 \mathrm{~A}$ External input: $50 \mathrm{~m} / 100 \mathrm{~m} / 250 \mathrm{~m} / 500 \mathrm{~m} / 1 / 2.5 / 5 / 10 \mathrm{~V}$
	Crest factor 6	750m/1.5/3/5/7.5/15/30/50/75/150/300/500V	Direct input: $5 \mathrm{~m} / 10 \mathrm{~m} / 25 \mathrm{~m} / 50 \mathrm{~m} / 100 \mathrm{~m} / 250 \mathrm{~m} / 500 \mathrm{~m} / 1 / 2.5 \mathrm{~A}$ External input: $25 \mathrm{~m} / 50 \mathrm{~m} / 125 \mathrm{~m} / 250 \mathrm{~m} / 500 \mathrm{~m} / 1.25 / 2.5 / 5 \mathrm{~V}$	Direct input:0.5/1/2.5/5/10/25A External input: $25 \mathrm{~m} / 50 \mathrm{~m} / 125 \mathrm{~m} / 250 \mathrm{~m} / 500 \mathrm{~m} / 1.25 / 2.5 / 5 \mathrm{~V}$
Instrument loss (input resistance)		Approximately $2 \mathrm{M} \Omega$	Direct input: Approximately $100 \mathrm{~m} \Omega+$ Approximately $0.07 \mu \mathrm{H}$ External input: Approximately $100 \mathrm{k} \Omega$	Direct input: Approximately $2 \mathrm{~m} \Omega+$ Approximately $0.07 \mu \mathrm{H}$ External input: Approximately $100 \mathrm{k} \Omega$
Instantaneous maximum allowed input (1 cycle, 20ms duration)		Peak voltage of 4 kV or rms of 1.5 kV (whichever is lower)	Peak current of 30 A or rms of 15 A (whichever is lower) External input: Peak not to exceed 10 times range-value	Peak current of 450 A or rms of 300 A (whichever is lower) External input: Peak not to exceed 10 times range-value
Continuous maximum allowed input		Peak voltage of 1.5 kV or rms of 1 kV (whichever is lower)	Peak current of 10 A or rms of 7 A (whichever is lower) External input: Peak not to exceed 5 times range-value	Peak current of 150 A or rms of 50 A (whichever is lower) External input: Peak not to exceed 5 times range-value
Continuous maximum common mode voltage $(50 / 60 \mathrm{~Hz}$)		600 Vrms CATII		
Influence from common mode voltage		With voltage input terminals shorted and current input terminals open ($50 / 60 \mathrm{~Hz}$): $\pm 0.01 \%$ of rng or less $(\pm(0.01 \times 15 /($ rated value of rng $)$) of rng or less for $10-\mathrm{V}$ rng or less). Reference value up to $100 \mathrm{kHz}: \pm(0.1 \times \mathrm{f} \%$ of rng$)$ or less, $(\pm(0.1 \times \mathrm{f} \times 15 /($ rated value of rng$)) \%$ of rng or less for $10-\mathrm{V}$ range or less), but no less than 0.01% Or, two times these values for crest factor 6 . ; frequency unit: kHz		
Input terminal type		Plug-in terminal (safety terminal)	Direct input: Large binding post External input: BNC connector (insulation type)	
A/D converter		Voltage/current input simultaneous conversion, 16-bit resolution, conversion speed (sampling period) of approximately $5 \mu \mathrm{sec}$		
Switching range-value		Range-value can be set independently for each element, through manual setting, automatic setting, or online setting		
Auto-range function		Increasing range-value: Range-value is increased when rms exceeds 110% of rated value or peak value exceeds approximately 330% (or 660% for crest factor 6) of rated value. Decreasing range-value: Range-value is decreased when peak is 300% (or 600% or less for crest factor 6) or less of lower range-value while rms is 30\% or less of rated value.		

Measurement Functions

M	Digital multiplication method		
Temperature: $23 \pm 3^{\circ} \mathrm{C}$	Crest factor 3: Up to 300 (in the valid input range). 3 (when inputting rated values of the measuring range). However, 2 for the 1000 V range.		
	Crest factor 6: Up to 600 (in the valid input range). 6 (when inputting rated values of the measuring range). However, 4 for the 500V range.		
Accuracy Conditions Temperature: $23 \pm 3^{\circ} \mathrm{C}$ Humidity: 30 to 75% RH Input waveform: Sine wave Common mode voltage: 0 V Line filter: OFF Power factor: $\cos \varnothing=1$ After warm up time has passed Wired condition after zero level compensation or range value change 3-month after calibration Unit for f in accuracy calculation formula is kHz	Frequen	Voltage/Current Accuracy: \pm (reading error + measurement range error)	Power Accuracy: \pm (reading error + measurement rang
	DC	0.1% of rdg + 0.2\% of rng	0.1\% of rdg + 0.2\% of rng
	$0.5 \mathrm{~Hz} \leq \mathrm{f}<10 \mathrm{~Hz}$	0.1% of rdg $+0.2 \%$ of rng	0.2% of rdg $+0.3 \%$ of rng
	$10 \mathrm{~Hz} \leq \mathrm{f}<45 \mathrm{~Hz}$	0.1% of rdg $+0.1 \%$ of rng	0.1% of rdg $+0.2 \%$ of rng
	$45 \mathrm{~Hz} \leq \mathrm{f} \leq 66 \mathrm{~Hz}$	0.1% of rdg + 0.05\% of rng	0.1% of rdg + 0.05\% of rng
	$66 \mathrm{~Hz}<\mathrm{f} \leqq 1 \mathrm{kHz}$	0.1% of rdg $+0.1 \%$ of rng (Voltage, 5 A input element current direct input and external input) 0.2% of $\mathrm{rdg}+0.1 \%$ of rng (50A input element current direct in	0.2% of rdg + 0.1\% of rng
	$1 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	0.3% of rdg $+0.1 \%$ of rng (Voltage, 5A input element current direct input) ($0.015 \times \mathrm{f}+0.3$)\% of rdg $+0.1 \%$ of rng (External input) $(0.1 \times f+0.2) \%$ of $\mathrm{rdg}+0.1 \%$ of rng (50 A input element current direct inp	0.3% of rdg $+0.2 \%$ of rng (Voltage, 5A input element current direct input) $(0.02 \times f+0.3) \%$ of rdg $+0.2 \%$ of rng (External input) $(0.1 \times f+0.2) \%$ of rdg $+0.2 \%$ of rng (50A input element current direct input)
	$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	0.6% of rdg $+0.2 \%$ of rng (Voltage, 5A input element current direct input) ($0.009 \times f+0.6) \%$ of rdg $+0.2 \%$ of rng (External input) $(0.1 \times \mathfrak{f}+0.2) \%$ of $\mathrm{rdg}+0.2 \%$ of rng (50 A input element current direct inp	0.7% of $\mathrm{rdg}+0.3 \%$ of rng (5 A input element current direct input) $(0.009 \times f+0.9) \%$ of rdg $+0.3 \%$ of rng (External input) $(0.3 \times \mathrm{f}-9.5) \%$ of $\mathrm{rdg}+0.3 \%$ of rng (50 A input element current direct input)
	$100 \mathrm{kHz}<\mathrm{f} \leq 500 \mathrm{kHz}$	$0.006 * f \%$ of rdg $+0.5 \%$ of rng (Voltage, 5A input element current direct input) ($0.03 \times \mathrm{f}-1.5$) \% of rdg $+0.5 \%$ of rng (External input)	$0.008^{*} f \%$ of rdg $+1 \%$ of rng (5A input element current direct input) ($0.06 \times \mathrm{f}-4$)\% of rdg $+1 \%$ of rng (External input)
	$500 \mathrm{kHz}<\mathrm{f} \leq 1 \mathrm{MHz}$	($0.022 \times \mathrm{f}-8$) of $\mathrm{rng}+1 \%$ of rng (Voltage, 5 A input element current direct input)	($0.048 \times f-20$) of rdg $+2 \%$ of rng (5A input element current direct input)
	Power factor influence \varnothing is phase angle between voltage and current	When $\cos \varnothing=0,45 \mathrm{~Hz}$ to $66 \mathrm{~Hz}: 0.15 \%$ of apparent power reading is added For 5 A input element current direct input, add $(0.15+0.05 \times \mathrm{f}) \%$ For 50 A input element current direct input, add $(0.15+0.3 \times \mathrm{f}) \%$ For external input, add $(0.15+0.1 \times \mathrm{f}) \%$ of apparent power readi When $0<\cos \varnothing<1$, add $(\tan \varnothing \times($ influence of power factor $=0)$)	d to the above power accuracy. For other frequencies: Reference value of apparent power reading to the above accuracy. of apparent power reading to the above accuracy. ing to the above accuracy. of power reading.
Effective input range	Voltage, current: Rms and AC: 1% to 110% of rated range-value, DC: 0% to $\pm 110 \%$ of rated range-value, Mean: 10% to 110% of rated range-value Power: DC measurement: 0% to $\pm 110 \%$ of rated range-value, AC measurement: Up to $\pm 110 \%$ of power range-value, with voltage and current within 1% to 110% of rated range-value (Sync source signal level must be 10% or more (20% or more for crest factor 6) of rated range value) Effective input is in the range up to 1000 V at Voltage, 5 A at 5 A input element, 50 A at 50 A input element and 10 V at External input.		
Accuracy	Add the accuracy of measurement range error (three months accuracy of crest factor 3 after calibration) $\times 1$ to the accuracy three months after calibration.		
One-year accuracy	Add the accuracy of reading error (three months after calibration) $\times 0.5$ to the accuracy three months after calibration.		
Line filter function	Measurement can be made with a line filter inserted in the input circuit. Cutoff frequency (fc): 500 Hz or 5.5 kHz		
Line filter on accuracy	Cut-off frequency of 500 Hz : Voltage, current: Add 0.2% of rdg in range of 45 to 66 Hz . Under 45 Hz , add 0.5% of rdg. Power: Add 0.3% of rdg in range of 45 to 66 Hz . Under 45 Hz , add 1% of rdg. Cutoff frequency of 5.5 kHz : Voltage, current: Add 0.2% of rdg under 66 Hz . At 66 Hz to 500 Hz , add 0.5% of rdg. Power: Add 0.3% of rdg under 66 Hz . At 66 Hz to 500 Hz , add 1% of rdg.		
Temperature coefficient	$\pm 0.03 \%$ of rdg $/{ }^{\circ} \mathrm{C}$ at 5 to $20^{\circ} \mathrm{C}$ and 26 to $40^{\circ} \mathrm{C}$		
Conditions for detecting lead and lag	Lead and lag are detected correctly when the voltage and current signals are both sine waves, the lead and lag amplitude is greater than or equal to 50% (or 100% for crest factor 6) of the measurement range, the frequency is between 20 Hz to 10 kHz , and the phase angle is $\pm\left(5 \mathrm{to} 175^{\circ}\right.$). * 1		
Measurement lower limit frequency			
Current and power DC accuracy (5 A input element) -----Add $20 \mu \mathrm{~A}$ to current and $20 \mu \mathrm{~A} \times$ (voltage reading) to power Current and power DC accuracy (50 A input element) -----Add 1 mA to current and $1 \mathrm{~mA} \times$ (voltage reading) to power External input -----Add ($0.05 /$ scaling value) A to current and ($0.05 / \mathrm{scaling}$ value) A \times (voltage reading) to power value) $\mathrm{A} \times$ (voltage reading) $/^{\circ} \mathrm{C}$ to power. Current rms, mean, AC-----Accuracy figures are specified with line filter turned ON for 2 mA or less on a 5 A input element, for 200 mA or less on a 50 A input element, for $10 /($ scaling value) A or less on a external input. Add $\left(0.006 \times 1^{2}\right) \%$ at 5 A input element. Add $\left(0.00006 \times 1^{2}\right) \%$ at 50 A input element. Add 0.1% of range if the display updating period is 50 msec . All accuracy of 0.5 Hz to 10 Hz : Reference values Voltage ----- Reference values in cases where $f(\mathrm{~Hz}) \times$ voltage $(\mathrm{V})>2.2 \times 10^{7}$ at 100 kHz or higher. Current ----- Reference values for 20 AAC or higher (except for range of 50 Hz to 400 Hz) or higher For currents less than 5 mA with frequencies above 1 kHz , the current accuracy and the power accuracy figures are the reference values. Add 20% of rng to the accuracy above for the accuracy of the waveform display data, voltage peak (Upk), and current peak (Ipk) in the range up to 1 MHz . (Reference Value) Effective input range of Upk and lpk is within 300% (within $\pm 600 \%$ for crest factor 6) in the range. However, within $\pm 200 \%$ for the 1000 V range of crest factor 3 (within $\pm 400 \%$ in the 500 V range of crest factor 6).			

Specifications

Calculation Functions

			Single-phase, three-wire	$\left.\begin{array}{\|c\|} \text { Three-phase, } \\ \text { (three-wire } \\ \text { (2 volage, 2 current) } \end{array} \right\rvert\,$	$\begin{aligned} & \text { Three-phase, } \\ & \text { three-wire } \\ & \text { (3 voltage, 3current) } \end{aligned}$	Three-phase, four-wire
Voltage $\mathrm{\Sigma U}$			(U1+U2)/2		(U1+U2+U3)/3	
Current $\mathrm{\Sigma l}$			(11+12)/2		$(11+12+13) / 3$	
Active power $E P$			P1+P2			P1+P2+P3
Reactive power Q, Σ Q	Normal measurement	$\mathrm{Qi}=\sqrt{\left(\mathrm{S}^{2}-\mathrm{P}^{2}\right)}$	Q1+Q2			Q1+Q2+Q3
	Harmonic measurement	Qi				
Apparent power S, Σ S	Normal measurement	$\mathrm{Si}=\mathrm{Ui} \times \mathrm{li}$	S1+S2	$\frac{\sqrt{3}}{2}(\mathrm{~S} 1+\mathrm{S} 2)$	$\frac{\sqrt{3}}{3}(\mathrm{~S} 1+\mathrm{S} 2+\mathrm{S} 3)$	(S1+S2+S3)
	Harmonic measurement	$\mathrm{Si}=\sqrt{\left(\mathrm{P}^{2}+\mathrm{Oi}^{2}\right)}$	$\sqrt{\left(\mathrm{IP}^{2}+\mathrm{\Sigma} \mathrm{Q}^{2}\right)}$			
Power factor $\lambda, \Sigma \lambda$	Power factor $\lambda, \Sigma \lambda$	$\lambda i=P i / S i$	EP/ES			
Phase angle $\phi, ~$ $\phi, \Sigma \phi$	Phase angle $\phi, \Sigma \phi$	$\phi \mathrm{i}=\cos ^{-1}(\mathrm{Pi} / \mathrm{Si})$	¢ $\mathrm{i}=\mathrm{cos}^{-1}(\mathrm{LP} / \Sigma \mathrm{S})$			
Calculation precision (of calculated values relative to measured values)		Apparent power (S) and reactive power (Q): $\pm 0.001 \%$ of power range-value Power factor (λ): ± 0.0001 Phase angle $(\phi): \pm 0.005^{\circ}$ relative to calculation from power factor				
Note 1: Apparent power (S), reactive power (Q), power factor (λ), and phase angle (ϕ) for this equipment are calculated from active power. (However, reactive power during harmonic measurement is the sum of every order.) Therefore, in the case of distorted-wave nput, these values may be different from those of other instruments based on different measurement principles Note 2: Since the phase is determined using the equation $\sigma \geq=W / V A$, there is no rule for accuracy. Note 3:The value of var in the E ∞ var calculation is calculated with a preceding minus sign (-) when the current input leads the voltage input, and a plus sign when it lags the voltage input, so the value of Éovar may be negative.						

Other parameters (during normal measurement)
Upk, Ipk (peak value), CF (crest factor), FF (form factor), IZl (impedance), Rs and Rp (resistance), $X s$ and X_{p} (reactance), η and $1 / \eta$
(efticiency), Pc (Corrected Power), $F 1$ to $F 4$ (user-defined functions), delta calculations (three-phase three-wire_ $3 V 3 A$ conversion, $Y-\Delta$
Wiring settings: Settings can be divided into three groups ($\Sigma A, S B$, and ΣC).

Display Functions

Display
Pixels in full screen: $\quad 640 \times 480$ (The LCD unit may contain defects of approximately 0.02% in the pixels of the full screen)
Numerical values:

Waveforms:
Vector:
Bar:
Trend:
Data updating rate:

Display update rate

Max. Display
Min. Display

Response type:
Display scaling function:
Averaging functions
Normal measurement
Exponential average:
Moving average:
Harmonic measurement averag
Attenuation constant of 2, 4, 8, 16, 32, or 6
Number of averages (N) set to $8,16,32,64,128$, or 256
When using an exponential average, the attenuation constant is 5.625 if the frequency of the PLL synchronization source is 55 Hz or greater but less than 75 Hz ; otherwise, the attenuation constant is 4.6875. (When data length $=8192$)

U,I,P: During rated range-value input, the decimal place and the counting unit are set so that the display does not exceed a count value of 60,000 . $\Sigma \mathrm{U}$, $\Sigma \mathrm{I}, \Sigma \mathrm{P}$: The decimal place and the counting unit are the same as for the maximum range-value of the calculated element.
Key lock function is available (version 3.21 and later)

Frequency Measurement Functions

Measurement input
Select three of the following: $\mathrm{U} 1,11, \mathrm{U} 2,12, \mathrm{U} 3,13$,
U4, 14, U5, I5, U6, 16
Measurement method:
Frequency range

Reciprocal method

Data updating rate
50 msec
100 msec
200 msec
500 msec
1 sec
2 sec
5 sec $1.5 \mathrm{~Hz} \leqq \mathrm{f} \leqq 50 \mathrm{kHz}$
$0.5 \mathrm{~Hz} \leqq \mathrm{f} \leqq 20 \mathrm{kHz}$
50A inpur measurement range is up to 100 kHz for
Frequency range $45 \mathrm{~Hz} \leqq \mathrm{f} \leqq 1 \mathrm{MHz}$ $25 \mathrm{~Hz} \leqq \mathrm{f} \leqq 1 \mathrm{MHz}$ $25 \mathrm{~Hz} \leqq \mathrm{f} \leqq 1 \mathrm{MHz}$
$15 \mathrm{~Hz} \leqq \mathrm{f} \leqq 500 \mathrm{kHz}$ $5 \mathrm{~Hz} \leqq \mathrm{f} \leqq 200 \mathrm{kHz}$ $5 \mathrm{~Hz} \leqq \mathrm{f} \leqq 200 \mathrm{kHz}$ $2.5 \mathrm{~Hz} \leqq \mathrm{f} \leqq 100 \mathrm{kHz}$ 50 A input element, up to 500 kHz for external input.

Accuracy

Integration Functions

The integrating functions do not work during waveform acquisition or in harmonic analysis mode ON.
Measured parameters: \quad Power (Wp), positive-only power (+Wp), negativeonly power (-Wp), current (q), positive-only current $(+q)$, negative-only current (-q) (For current integration, select only one of the following for each

Mode

 element: rms, mean, DC, AC.), time (Time)Standard integration mode (timer mode)
Continuous integration mode (repeat mode)
Manual integration mode
Individual element integration Integration can be started/stopped element by ele-
Timer ment using GP-IB or serial (RS-232) communications. Integration can be stopped automatically according to a timer setting.
Setting range: 0000 h 00 min 00 sec to 10000 hOOmin 00 sec
Count overflow If the integration value exceeds ± 999999 $\mathrm{MWh}(\mathrm{MAh})$, the elapsed time is saved and the operation is stopped.
\pm (unit accuracy $+0.05 \%$ of rdg) $\pm 0.02 \%$
Timer accuracy

Harmonic Measurement Functions

Measurements
Select one of the following: $\Sigma \mathrm{A}, \Sigma \mathrm{B}, \Sigma \mathrm{C}$
Method PLL synchronization or external sampling clock
Measurement frequency range PLL synchronization: Synchronization source fundamental frequency of 10 Hz to 1 kHz
External sampling clock: Fundamental wave of 0.5 Hz to 100 Hz (Input 2048 times the fundamental frequency. The waveform is a square wave with a duty cycle of 50% at the TTL level.)
For each order: U, I, P, S, Q, $\lambda, \phi(U-I), \phi U, \phi I$ (phase difference of harmonic component relative to fundamental wave), $\mathrm{IZI}, \mathrm{Rs}, \mathrm{Rp}, \mathrm{Xs}, \mathrm{Xp}$
Total: U, I, P, S, Q, λ, ϕ
Σ calculation of fundamental wave and total: $\mathrm{U}, \mathrm{I}, \mathrm{P}$, S, Q, and λ
For each order: Harmonic content of U, I, and P THD of U, I, and P
UTHF (voltage telephone harmonic factor), ITHF (current telephone harmonic factor), UTIF (voltage telephone influence factor), ITIF (current telephone influence factor), HVF (harmonic voltage factor), HIF (harmonic current factor)
8192, 4096, or 2048
FFT data length
32 bits
Window function
Anti-aliasing filter
PLL synchronization

Fundamental frequency (Hz)	Sampling frequency	Window width relative to FFT data length Maximum(number of fundamental wave cycles)analyzed orders			
		8192	4096	2048	
$10 \leqq \mathrm{f}<20$	$\mathrm{f} \times 2048$	4	2	1	100
$20 \leqq \mathrm{f}<40$	f $\times 1024$	8	4	2	100
$40 \leqq \mathrm{f}<75$	$\mathrm{f} \times 512$	16	8	4	100
$75 \leqq f<150$	$\mathrm{f} \times 256$	32	16	8	100
$150 \leqq \mathrm{f}<440$	$\mathrm{f} \times 128$	64	32	16	50
$440 \leqq \mathrm{f} \leqq 1000$	$\mathrm{f} \times 64$	128	64	32	25
External sampling clock					
Fundamental frequency (Hz)	Sampling frequency	Window width relative to FFT data length Maximum(number of fundamental wave cycles)analyzed orders			
		8192	4096	2048	
$0.5 \leqq f \leqq 100$	f $\times 2048$	4	2	1	100

However, it is $1 \leqq \mathrm{f} \leqq 100$ when the FFT data length is 8192
Accuracy: \pm (reading error + measurement range error) (Line filter 5.5 kHz ON)

	Voltage/Current	Power
$0.5 \mathrm{~Hz} \leqq \mathrm{f}<10 \mathrm{~Hz}$	0.4% of $\mathrm{ddg}+0.2 \%$ of rng	0.7% of $\mathrm{rdg}+0.3 \%$ of rng
$10 \mathrm{~Hz} \leqq \mathrm{f}<45 \mathrm{~Hz}$	0.4% of $\mathrm{rdg}+0.1 \%$ of rg	0.6% of $\mathrm{dg}+0.2 \%$ of nng
$45 \mathrm{~Hz} \leqq \mathrm{f} \leqq 66 \mathrm{~Hz}$	0.3% of $\mathrm{rdg}+0.05 \%$ of ng	0.4% of $\mathrm{rdg}+0.05 \%$ of rng
$66 \mathrm{~Hz}<\mathrm{f} \leqq 1 \mathrm{kHz}$	1% of $\mathrm{rdg}+0.1 \%$ of ng	1.5% of $\mathrm{rdg}+0.1 \%$ of rng
$1 \mathrm{kHz}<\mathrm{f} \leqq 2.5 \mathrm{kHz}$	2% of $\mathrm{rdg}+0.1 \%$ of rng	------

$1 \mathrm{kHz}<\mathrm{f} \leqq 2.5 \mathrm{kHz} \quad 2 \%$ of $\mathrm{rdg}+0.1 \%$ of $\mathrm{mg} \quad$ However, the amplitude level of the PLL source is 30% of range or more (or 60% for a crest factor of 6).
Two times range error for crest factor 6 .
During nth-order component input, add $\{(\mathrm{n} /(\mathrm{m}+1)) /$ During nth-order component input, add $\{(\mathrm{n} /(\mathrm{m}+1)) /$
$50\} \%$ of the nth-order reading to $(\mathrm{n}-\mathrm{m})$ th order and

Line filter OFF
$50\} \%$ of the nth-order reading to $(n-m)$ th order and
$(n+m)$ th order.

($\mathrm{n}+\mathrm{m}$)th order.

For normal measurement accuracy, during nth-order
component input, add $\{(\mathrm{n} /(\mathrm{m}+1)) / 50\} \%$ of the nth-order reading to $(n-m)$ th order and $(n+m)$ th order. Add ($n / 500$)\% of the $n t h-o r d e r ~ r e a d i n g ~ t o ~ t h e ~ n t h-o r-~$ der component.

Waveform Display Functions

Data memory size
Vertical axis zoom
Waveform display format
Data interpolation
Cursor measurement
Triggers
Mode
Type
Source
Slope
Position
Sample rate
Time/Div

1 kW (Peak to peak compressed data)
0.1-100 times
$1,2,3$, or 4 split display
Dot or linear interpolation
When you place the cursor on the waveform, the value of that point is displayed.

Auto/Normal

Edge
U1, I1, U2, I2, U3, I3, U4, I4, U5, I5, U6, I6, externa Rising/falling/both
0\% (fixed)
Approximately 200 kHz
0.5 msec to 500 msec (not to exceed $1 / 10$ of display updating period)

The frequency that allows displaying of waveforms is up to approximately 10 kHz .

Trend Display

Measurement item
Horizontal axis Normal (waveform OFF) Normal (waveform ON)

Harmonic measurement
Scale

Internal Memory

Internal memory size Store interval

Maximum 16 items
3/6/10/30sec/1/3/6/10/30min/1/3/6/12/24hour/div 1 to $500 \mathrm{P} / \mathrm{div}$ ($\mathrm{P} / \mathrm{div}$ is the number of data points per grid section)
1 to 500 Points/div (P/div is the number of data points per grid section) Auto/Manual

Approximately 11 MB
Maximum 50msec (waveform OFF) to 99 hour 59 minutes 59 seconds.

* Store interval is maximum approximately 620 ms when waveform data acquisition is ON.

Guideline for Storage Time (Waveform Display OFF, Integration Function OFF)

channel number	items (each channel)	store interval	Measurable time
3 ch	3	50 ms	2 hours 50 minutes
3 ch	10	1 second	22 hours
6 ch	10	50 ms	35 minutes
6 ch	20	1 second	6 hours
Note: Depending on the user-defined math integration, and other settings, the actual measurement time may be shorter than stated above			

D/A Output (optional) (/DA)

Response time
Output Voltage
Update interval
Number of outputs
Accuracy
Maximum output current
Temperature coefficient
Output form
Frequency
At maximum, two times the display update rate.
$\pm 5 \mathrm{VF}$.S for each rated value
Same as the data update rate on the main unit 30 parameters (each channel can be set separately) \pm (display accuracy $+0.2 \%$ of F.S.)(F.S. $=5 \mathrm{~V}$) $\pm 0.1 \mathrm{~mA}$
$\pm 0.05 \%$ of F.S. $/^{\circ} \mathrm{C}$

Integrated values

Other parameters

Motor Evaluation Functions (optional) (IMTR)
The motor evaluation functions do not work in harmonic measurement mode Calculated parameters Torque, rpms, mechanical power, synchronization speed, slip, motor efficiency, total efficiency
Measured parameters
Analog input for calculating torque and rpms nput resistance Accuracy

Approximately $1 \mathrm{M} \Omega$
$\pm(0.1 \%$ of rdg $+0.2 \%$ of rng)
nput range-values ffective input range Temperature coefficien

Up to $\pm 110 \%$ of range-value emperature coefficient $\pm 0.03 \%$ of rng/ ${ }^{\circ} \mathrm{C}$
Pulse input for rpm calculation
nput resistance Approximately $1 \mathrm{M} \Omega$ Accuracy
Input range
Effective amplitude $\quad \pm 5 \mathrm{Vpk}$ higher
nput waveform 50% duty ratio rectang Frequency measurement range 2 Hz to 200 kHz

Built-in Printer (optional) (/B5)

Printing method	Thermal line-dot
Dot density	8 dots $/ \mathrm{mm}$
Paper width	80 mm
Effective recording width	72 mm
Recorded information	Screenshots, list of measured values, harmonic bar graph printouts, settings

Ethernet (optional) (C10)

Transmission method	Ethernet (10BASE-T)
Supported services	FTP server, FTP client, LPR (network printing)

Electrical and mechanical specifications

	As per IEEE802.3
Connector	RJ-45 connector
Other	Cannot be used for DIAdem and other protocols.

Built-in Hard Disk (optional) $(/ \mathbf{C 1 0})$	
Capacity	$10 \mathrm{~GB}(2 \mathrm{~GB} \times 5)$ IBM format
SCSI ID	4 (fixed)

External I/O

EXT CLK

Connector Input voltage

Connector
Synchronized measurement

Internal floppy drive MEAS.STOP terminal of the slave unit.	
Size	3.5-inch
Format	1.44 MB
Communication functions	
GP-IB or serial (RS-232) provided as a standard function.	
	Electrical and mechanical specifications
	As per IEEE St'd 488-1978
	Functional specifications
	SH1, AH1, T6, L4, SR1, RL1, PR0, DC1, DT0, C0
	Protocol: As per IEEE St'd 488.2 1992
Serial (RS-232) interface	
Connector	D-Sub 9-pin
Specification	EIA-574 (specifications for 9-pin interface in EIA
	232 (RS-232) standard)
Transfer rate	1200, 2400, 4800, 9600, 19200 bps
VGA video output	
Connector type	D-Sub 15-pin (VGA VIDEO OUT)
SCSI interface (optional)	
Specification	SCSI(Small Computer System Interface) ANSI X3.131-1986
Connector	D-sub half-pitch 50-pin (pin type)
Connector pin assignments	Unbalanced (single-end), internal terminator

General Specifications

Safety standard*

Emission *1

Immunity *1
Warmup time Approximately 1 hour
5 to $40^{\circ} \mathrm{C}, 20$ to 80% RH when not using the printer
5 to $40^{\circ} \mathrm{C}, 35$ to 80% RH when using the printer.(no condensation)
Storage temperature
Operating elevation Insulating resistance

Withstand voltage

Rated supply voltage
Allowed supply
Rated supply frequency

Consumed power
External dimensions
Weight
-25 to $60^{\circ} \mathrm{C}$ (no condensation)
2000 meters or less
$50 \mathrm{M} \Omega$ or higher at 500 VDC
Between casing and power plug
Between voltage input terminals (ganged) and casing
Between current input terminals (ganged) and casing
Between voltage input terminals (ganged) and cur-
rent input terminals (ganged)
Between input terminals of each element.
Between torque/speed input terminals (ganged) and casing Between torque input terminals (ganged) and speed input terminals (ganged)
Between input terminals of each element
1500 VAC for one minute at $50 / 60 \mathrm{~Hz}$
Between casing and power plug
3700 VAC for one minute at $50 / 60 \mathrm{~Hz}$
Between voltage input terminals (ganged) and casing Between current input terminals (ganged) and casing Between voltage input terminals (ganged) and current input terminals (ganged)
Between input terminals of each element.
100 to 120 VAC, 200 to 240 VAC (switches automatically) uation range
90 to 132 VAC, 180 to 264 VAC
oltuation
48 to 63 Hz
Maximum 150 VA (when using internal printer)
Approximately $426 \mathrm{~mm}(\mathrm{~W}) \times 177 \mathrm{~mm}(\mathrm{H}) \times 400 \mathrm{~mm}$
(D) (excluding protrusions)

Approximately 15 kg (main unit with 6 input elements and options installed)
1 Emission, immunity and safety standards apply to products having the CE Mark. For all other products, please contact your nearest YOKOGAWA representative as listed on the back cover of this manual.
2 Overvoltage Categories define transient overvoltage levels, including impulse withstand voltage levels. Overvoltage Category II: Applies to equipment supplied with electricity from fixed installations like a distribution
3 board.
Degree 2: Applies to normal indoor atmospheres (with only, or only dry, nonductive pollution)
4 Annex A (normative): Immunity test requirements for equipment intended for use in industrial locations.

Model and Suffix Codes

*The WT1600 unit cannot be purchased without any elements. Select an element type (5 A or 50 A) and quantity.
e: In order to add elements and options after the WT1600 has been delivered, the WT 1600 must be
modified at the factory. Be aware of this in making your product selections. For further details, see modified at the factory. Be aware of this in making
Yokogawa's home page or contact our sales office.

-Standard accessories

Power cord, Spare power fuse, Rubber feet, current input protective cover, User's manual, communication
interface user's manual, printer roll paper(provided only with /B5), 36 -pin connector (provided only with /DA) The B9284LK external sensor cable (blue) and the safety terminal adapter are sold separately.

■Rack Mount

Product	Model	Description	Order Q'ty
Rack mounting kit	$751535-$ E4	For EIA	1
Rack mounting kit	$751535-\mathrm{J} 4$	For JIS	1

■Clamp on Probe

Model	Specification	Order Q'ty
96001^{*}	20 Hz to $20 \mathrm{kHz}, 600 \mathrm{Apk}$ (400 Arms$)$	1
751552	30 Hz to $5 \mathrm{kHz}, 1400 \mathrm{Apk}(1000 \mathrm{Arms})$	1

* For detailed information, see Power Meter Accessory Catalog Bulletin 7515-52E
$*$

■Accessory (sold separately)

Product	Model (parts number	Description	Order Q'ty
Test read set	758917	A set of 0.8m long, red and black test leads	1
Small alligator-clip	$758922 A$	Rated at 300V and used in a pair	1
Large alligator-clip	$758929 A$	Rated at 1000V and used in a pair	1
Safety terminal adapter	758923	(spring-hold type) Two adapters to a set.	1
Safety terminal adapter	758931	(screw-fastened type) Two adapters to a set.	1
Conversion adapter	751512^{1}	1.5 mm hex Wrench is attached Safety-terminal-binding-post adapter	1
Conversion adapter	758924	BNC-banana-jack(female) adapter	1
Conversion adapter	366922^{1}	BNC-banana-jack(male) adapter	1
Fork terminal adapter	$758921 \triangle$	Banana-fork adapter	1
External sensor cable	B9284LK	Current sensor input connector. Length 0.5m	1
printer roll paper	B9316FX	Thermal paper, 10 meters (1roll)	1

Due to the nature of this product, it is possible to touch its metal parts. Therefore, there is a risk of electric shock, so
the product must be used with caution.
1: Use these products with low-voltage circuits (42 V or less)

■Application Software

Product	Model	Description	Order Q'ty
WTViewer	760122	Data acquisition software	1

■Current Sensor Unit and Current Transducer

Model Code	Suffix Code	
751521		Single phase
751523	-10	3 phase U, V
	-20	3 phase U, W
	-30	3 phase U, V, W
Supply voltage	-1	100 V AC $(50 / 60 \mathrm{~Hz})$
	-3	115 V AC $(50 / 60 \mathrm{~Hz})$
	-7	230 V AC $(50 / 60 \mathrm{~Hz})$
	-D	UL/CSA standard
	-F	VDE standard
	-R	SAA standard
	-J	BS standard
	-H	GB Standard

Accuracy assurance and calibration are possible when the Current Sensor Unit (Model 751521, 751523) is combined
with WT series instruments or the PZ4000.

Model Code	Description		
751574	Max. 600 Apeak DC-CT		
Assured accuracy and calibration are not possible when the Current Transducer (Model 751574) is combined with WT series instruments or the PZ4000. Also please be aware that measurement errors can occur depending on the conductor and wiring.			
Accessories for 751574			
Product	Pare No.	Speciffications	Minimum Purchase Quantity
Output connector	B8200JQ	D-Sub 9 pin, with screws	1
Burden resistor	B8200JR	$10 \Omega 4 \mathrm{pcs}$.	1

Exterior (WT1600)

The TCP/IP software used in this product and the documentation for that TCP/IP software are based in part on BSD Networking Software, Release 1 licensed from The Regents of the University of California.

YOKOGAWA

